Continuous Cyclic Mechanical Tension Increases Ank Expression in Endplate Chondrocytes Through the TGF-β1 and p38 Pathway
نویسندگان
چکیده
The normal ANK protein has a strong influence on anti-calcification. It is known that TGF-β1 is also able to induce extracellular inorganic pyrophosphate (ePPi) elaboration via the TGF-β1-induced ank gene expression and the mitogen-activated protein kinase (MAPK) signaling acts as a downstream effector of TGF-β1. We hypothesized that the expression of the ank gene is regulated by mechanics through TGF-β1-p38 pathway. In this study, we investigated the mechanism of short-time mechanical tension-induced ank gene expression. We found that the continuous cyclic mechanical tension (CCMT) increased the ank gene expression in the endplate chondrocytes, and there was an increase in the TGF-β1 expression after CCMT stimulation. The ank gene expression significantly increased when treated by TGF-β1 in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our study results indicate that CCMT-induced ank gene expressions may be regulated by TGF-β1 and p38 MAPK pathway.
منابع مشابه
Investigating Conversion of Endplate Chondrocytes Induced by Intermittent Cyclic Mechanical Unconfined Compression in Three-Dimensional Cultures
Mechanical stimulation is known to regulate the calcification of endplate chondrocytes. The ANK protein has a strong influence on anti-calcification by transports intracellular inorganic pyrophosphate (PPi) to the extracellular. It is known that TGF-β1 is able to induced Ank gene expression and protect chondrocyte calcification. Intermittent cyclic mechanical tension (ICMT) could induce calcifi...
متن کامل(ANK) gene and extracellular nucleotide phosphatase/phosphodiesterase (ENPP)1 mRNA expression and TGF-β1 protein expression in rat endplate chondrocytes in vitro. Endplate chondrocytes were isolated and cultured in vitro. Following identification with toluidine blue and immunocytochemical staining, chondrocytes
We investigated the effects of mechanical strain on the progressive ankylosis (ANK) gene and extracellular nucleotide phosphatase/phosphodiesterase (ENPP)1 mRNA expression and TGF-β1 protein expression in rat endplate chondrocytes in vitro. Endplate chondrocytes were isolated and cultured in vitro. Following identification with toluidine blue and immunocytochemical staining, chondrocytes were s...
متن کاملP120-Catenin Protects Endplate Chondrocytes From Intermittent Cyclic Mechanical Tension Induced Degeneration by Inhibiting the Expression of RhoA/ROCK-1 Signaling Pathway.
STUDY DESIGN The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. OBJECTIVE To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. SUMMAR...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملInorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes
ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 57 شماره
صفحات -
تاریخ انتشار 2013